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Abstract:
Artificial intelligence (AI) is increasingly improving the processes such as emergency patient care 
and emergency medicine education. This scoping review aims to map the use and performance of 
AI models in emergency medicine regarding AI concepts. The findings show that AI‑based medical 
imaging systems provide disease detection with 85%–90% accuracy in imaging techniques such as 
X‑ray and computed tomography scans. In addition, AI‑supported triage systems were found to be 
successful in correctly classifying low‑ and high‑urgency patients. In education, large language models 
have provided high accuracy rates in evaluating emergency medicine exams. However, there are still 
challenges in the integration of AI into clinical workflows and model generalization capacity. These 
findings demonstrate the potential of updated AI models, but larger‑scale studies are still needed.
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Introductıon

Artificial intelligence (AI) is a rapidly 
advancing, game‑changing technology 

in health care. Emergency medicine, as 
a young and rapidly updating field with 
its sub‑branches open to technologies, 
provides an ideal foundation for AI 
applications.  AI studies have been 
increasing logarithmically in recent years 
and are being applied with different 
methods in many areas of emergency 
medicine. The use of AI in areas such as 
triage, diagnosis, outcome prediction, and 

research on this topic is rapidly increasing. 
The performance of applications of AI 
models generally varies depending on the 
models and usage areas.

Although there are a large number of 
reviews in the literature focusing on 
specific areas of the use of AI in emergency 
medicine, most of the existing studies 
remain limited in scope. Furthermore, these 
studies of AI inherently become outdated 
over time. This scoping review aims to 
investigate the current areas of use of AI in 
emergency medicine and investigate their 
performance in these areas by categorizing 
them under AI applications.
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Methods

This scoping review was conducted according to 
the PRISMA Scoping Review guidelines. There is an 
unprecedented rise in AI models, and models are 
frequently updated, with older versions becoming 
obsolete. While traditional machine learning (ML) 
models are being replaced by ensemble methods and 
deep learning (DL), previous versions of large language 
models (LLM) are disappearing from use as new 
versions are released. AI studies are also experiencing 
logarithmic increases at this rate all over the world. For 
these reasons, articles published between January 1, 2024, 
and January 1, 2025, were scanned in order to provide 
an up‑to‑date compilation. Case reports, reviews, 
comments and letters, and studies not related to AI and 
emergency medicine are excluded. PubMed and Web of 
Science (WoS) databases are searched within this scope 
using boolean search operators.

Our research question is determined as “In which 
areas (triage, diagnosis, prediction, etc.) are AI‑supported 
systems more effective in the field of emergency 
medicine” and the search was made with Boolean search 
strategies and includes keywords and boolean operators 
optimized in accordance with the research questions in 
WOS and Pubmed Databases.

WOS: ALL=((TOPIC: (“Artificial Intelligence” OR 
“Machine Learning” OR “Deep Learning” OR “Image 
Processing” OR “Large Language Model” OR “Natural 
Language Processing” OR “Signal Processing”)) 
AND (TOPIC: (“Emergency Medicine” OR “Emergency 
Department” OR “Triage” OR “Prehospital”))).

Pubmed: ((“Artificial Intelligence” OR “Machine 
Learning” OR “Deep Learning” OR “Image Processing” 
OR “Large Language Model” OR “Natural Language 
Processing” OR “Signal Processing” OR “Big Data”) 
AND (“Emergency Medicine” OR “Emergency 
Department” OR “Triage” OR “Prehospital”)).

During the searches, articles written in English and 
published between January 2024 and January 2025 
were scanned and studies that met these criteria were 
evaluated for eligibility and the selection process was 
shown in the PRISMA flowchart [Figure 1]. In this 
scoping review, the selection process of studies was 
carried out in three stages: “Title screening,” “abstract 
screening” and “full text screening.” First, the titles of the 
studies obtained as a result of the search in the databases 
were scanned, and those that were not directly related 
to the research questions were eliminated. The abstracts 
of the studies that passed the title screening and, in the 
last stage, the full texts of the studies that passed the 
abstract review were evaluated, and those that fully met 

the criteria were included in the review. Search results 
in both databases were evaluated by two independent 
researchers, with disagreements regarding selection 
resolved by a third researcher [Figure 1]. Ineligible study 
design, studies not related to the use of AI in emergency 
medicine, studies that include AI but not in the context of 
emergency medicine, bioinformatics studies, theoretical 
models, animal models, studies with very small sample 
size (n < 10), retracted, preprinted and whose results are 
not reported are excluded from the review.

Data collected from studies included in this scoping review 
are investigated for population, intervention, comparison 
and outcome, type of AI application (e.g., triage, diagnosis, 
outcome prediction), AI methods used (e.g. ML, image 
processing, signal processing), and the performance 
metrics associated with each AI model.

Results

We reviewed a total of 1360 studies on the use of AI 
in emergency medicine. The distribution according to 
the reasons for exclusion is shown in the flowchart. 
The concepts are investigated under two essential 
categories in emergency medicine: Emergency patient 
care and Emergency Medicine Education. In emergency 
patient care, the AI models are evaluated as its subtitles: 
image processing (n = 36), text mining (n = 43), signal 
processing (n = 11), and data mining with structured big 
data (n = 85). On the other hand, there were 12 studies 
involving emergency medicine education. In total, 187 
studies were included in the review.

This scoping review categorizes AI applications in 
emergency medicine into two main domains: emergency 
patient care and emergency medicine education.

Emergency Patient Care

Image processing
Artificial ıntelligence‑assisted image processing 
procedures
The effectiveness of AI‑based image processing analyses 
depends on both the preprocessing techniques applied 
to the images and the efficiency of the selected method. 
Medical images can vary based on the type of machine 
used, how the image is taken, and differences between 
patients.[1‑3] DL models achieve higher accuracy with 
large datasets, prompting researchers to integrate 
multiple datasets to enhance performance. However, 
combining data from different sources can make training 
AI models more difficult.[4,5]

Therefore, standardizing datasets and minimizing image 
variations are essential for AI models to accurately learn 
specific patterns.[6] During the preprocessing stage, 
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techniques such as image normalization, denoising, 
and data augmentation enhance the generalization 
capability of models.[7] In addition, accurate labeling 
and annotation are fundamental factors that determine 
the success of model training. Since manual labeling is 
a time‑consuming process, semi‑automatic labeling, and 
AI‑assisted annotation tools offer significant advantages 
at this stage.[8,9] These optimizations improve the accuracy 
and reliability of analysis algorithms, ultimately leading 
to more dependable results in clinical applications.

One of the most critical stages in image processing is the 
application of image enhancement techniques.[10] Raw 
images often exhibit low contrast, noise, or artifacts, 
making direct analysis challenging. To improve image 
quality, techniques such as contrast enhancement, edge 
detection, filtering, thresholding, and segmentation 
are commonly employed.[11‑13] In medical imaging, the 
effective application of these techniques is particularly 
crucial for obtaining clearer and more accurate diagnostic 
results.

Following these preprocessing steps, the model 
design and training process begins. The performance 
of AI models depends on the choice of algorithms, 
the quality of the training dataset, and the model’s 
learning process.[14] In medical image processing, both 
supervised learning methods (e.g., convolutional neural 

network [CNN], ResNet, VGG) and unsupervised 
learning techniques (e.g., autoencoders, GANs) are 
widely utilized. During model training, errors are 
minimized through loss function calculations, model 
parameters are optimized using the backpropagation 
algorithm, and the efficiency of the process is enhanced 
with GPU‑accelerated computations.[15,16]

After the training process, the model must be validated 
and tested to ensure its reliability. Performance 
metrics such as accuracy, precision, recall, F1 score, 
structural similarity index (SSIM), peak signal‑to‑noise 
ratio, and area under the curve (AUC) are commonly 
used to assess the model’s overall effectiveness. In 
addition, cross‑validation methods are applied to 
prevent overfitting and ensure that the model performs 
consistently across different datasets.[17]

In the final stage, the model undergoes optimization 
and deployment. Techniques such as learning rate 
adjustments, regularization methods, and model 
compression (e.g.,  quantization, pruning) are 
implemented to enhance efficiency in real‑world 
applications. As AI‑based image processing solutions 
continue to be adopted across various domains, 
ongoing optimization and refinement of these models 
remain crucial.[18] The advancement of AI‑driven 
image‑processing technologies is driving revolutionary 
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Figure 1: Flowchart diagram of the selection process in the review
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transformations in sectors such as medical diagnostics, 
autonomous systems, and industrial automation.

Preprocessing procedures for images: Artificial 
ıntelligence‑assisted medical ımage processing 
approach
The preprocessing phase enhances the accuracy and 
reliability of analysis algorithms by reducing image 
variations and improving overall image quality. 
Preprocessing steps tailored to different medical imaging 
techniques play a critical role in determining the success 
of AI models. Employing preprocessing techniques that 
align with the specific characteristics of an image can 
enhance model performance and contribute to more 
accurate clinical decision‑making.[7,17]

X‑ray is a two‑dimensional imaging technique 
represented by a single image frame. In contrast, 
computed tomography (CT) and magnetic resonance 
imaging (MRI) are three‑dimensional imaging 
methods that capture multiple cross‑sections of a 
specific anatomical structure at a given point in time. 
Ultrasound (USG) is a dynamic imaging technique that 
records video sequences composed of multiple frames 
over a specific time interval.

While basic preprocessing techniques are applied to 
individual frames in X‑ray images, they are implemented 
for each section in CT and MRI scans and for each 
frame in USG videos. However, due to the unique 
characteristics of each imaging modality, specialized 
preprocessing techniques have been developed for 
different imaging types, including X‑ray, CT, MRI, and 
USG, to optimize AI model performance.[13]

X‑ray images are often affected by low contrast, 
low resolution, noise, and artifacts. To enhance the 
effectiveness of AI models, preprocessing techniques 
such as noise reduction, contrast enhancement, and 
edge detection are applied. Commonly used noise 
reduction methods include Gaussian Blur, Median 
Filtering, and Wavelet Denoising.[19] Histogram 
equalization and Contrast Limited Adaptive Histogram 
Equalization improve the visibility of bone structures,[20] 
while normalization techniques contribute to model 
performance and robustness.[17]

In CT and MRI images, each slice must be processed 
individually to maintain data consistency. Resizing is 
commonly performed to standardize image dimensions 
across datasets.[15,21] Various methods are employed to 
remove metal artifacts, including metal artifact reduction 
algorithms and iterative reconstruction techniques. In 
MRI images, intensity variations caused by magnetic field 
inhomogeneities can negatively impact model learning. 
To correct these variations, N4ITK bias field correction 

is frequently applied during preprocessing. In addition, 
normalization techniques and 3D CNNs improve data 
processing efficiency and model accuracy.[22‑24]

USG videos require specialized preprocessing due to 
high noise levels and variable contrast. Motion analysis 
and optical flow algorithms are used to identify key 
frames.[25] Speckle noise, a common issue in USG 
imaging, is reduced using techniques such as the Wiener 
filter and anisotropic Diffusion.[26] Image quality can be 
further enhanced with super‑resolution techniques and 
histogram equalization.[27] For time‑series analysis of 
USG videos, long short‑term memory networks and 3D 
CNN‑based approaches are often employed.[28]

X‑ray
During the review period, a total of 9 X‑ray studies 
were evaluated based on predefined inclusion and 
exclusion criteria[29‑37] [Supplementary Table 1] (https://
t u r k j e m e r g m e d . c o m / p a g e s / 2 0 2 5 ‑ 2 ‑ i s s u e ‑
supplementary‑files). These studies primarily focused 
on the analysis of bone structures and chest X‑ray 
images. Among the reviewed studies, the research 
by Wang et al. stands out due to its use of the largest 
dataset. In this study, an EfficientNetV2‑based model 
was developed using 3498 chest radiographs along with 
external datasets, achieving an AUC of 0.878 in detecting 
pulmonary tuberculosis in the test set.[31]

The highest diagnostic performance was reported in the 
study by Ghatak et al.,[37] where the Annalise Enterprise 
CXR AI model was used to detect vertebral compression 
fractures in 596 chest radiographs (272 positive and 323 
negative cases). This AI model demonstrated strong 
performance in the automated diagnosis of vertebral 
compression fractures, achieving an AUC of 0.955.

Conversely, the study with the lowest performance 
was the external dataset validation conducted by Wang 
et al.[31] The objective of this study was to develop and 
validate a DL‑based computer‑aided diagnosis (CAD) 
algorithm for detecting pulmonary tuberculosis in 
emergency department settings. The study compared 
the performance of the EfficientNetV2‑based CAD 
algorithm with radiologists’ clinical reports. The 
findings indicated a decrease in model performance 
when tested on the Montgomery (AUC: 0.838) and 
Shenzhen (AUC: 0.806) datasets, highlighting the 
limitation of using single‑center data in terms of 
generalizability.[31]

Overall, AI‑based analyses in X‑ray imaging have been 
shown to enhance diagnostic accuracy, assist in fracture 
detection, and improve the identification of pulmonary 
diseases. However, challenges such as artificial dataset 
augmentation, studies conducted in limited clinical 

https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
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settings, and issues related to model generalizability 
remain key limitations.[38]

Computed tomography
A total of 11 CT studies were evaluated based on inclusion 
and exclusion criteria during the publication review 
period.[39‑49] These studies assessed the effectiveness of AI 
applications across a wide range of clinical conditions, 
including acute pancreatitis, ureteral stones, skull 
fractures, intracranial hematomas, cervical fractures, 
and aortic dissection.

The study with the largest dataset was conducted by 
Ruitenbeek et al., which included cervical spine CT 
images from 2973 patients and evaluated the impact 
of the AIDoc Medical AI algorithm on cervical fracture 
detection.[48] The AI‑assisted workflow improved 
diagnostic efficiency by achieving an accuracy of 94.8% 
and reducing the average diagnosis time for fracture 
cases by 16 min.

In terms of performance, AUC and accuracy metrics 
varied between 0.788 and 0.993. The highest AUC 
value (0.993) was reported in the study by Zhang 
et al., which focused on the classification and severity 
assessment of acute pancreatitis.[44] The model, trained 
on a dataset of 190 patients, demonstrated high accuracy 
in pancreatic segmentation and successfully detected 
complications such as peripancreatic necrosis and edema.

The lowest‑performing model was developed by Choi 
et al. for the detection of cerebral hemorrhage. The DLHD 
algorithm, evaluated on 111 brain CT images, achieved 
the lowest AUROC value of 0.788. The study indicated 
that while the model improved sensitivity, it also reduced 
specificity and exhibited a high false‑positive rate.[45]

While AI‑based analyses of CT images provide significant 
advancements in early diagnosis and rapid intervention, 
challenges such as the lack of large‑scale multicenter 
validation and difficulties in adapting models to different 
imaging protocols remain critical considerations for 
clinical integration.

Magnetic resonance imaging
During the publication review period, a total of 
three MRI studies were evaluated based on inclusion 
and exclusion criteria.[50‑52] These studies primarily 
investigated the diagnostic efficacy of acute ischemic 
stroke (AIS) detection, mortality prediction, and 
ultrafast brain MRI protocols. The sample sizes varied, 
with the largest dataset belonging to a study that 
developed a DL‑based model for mortality prediction 
in ischemic stroke patients, utilizing data from 2710 
individuals.[50]

In terms of performance, AUC and accuracy metrics 
ranged between 0.852 and 0.95. The highest AUC 
value (0.95) was reported in the study by Kim et al., 
which developed a 3D CNN model for AIS detection.[50] 
In addition, Lang et al. evaluated a 2‑min ultrafast brain 
MRI protocol designed for rapid imaging in emergency 
settings, demonstrating a diagnostic agreement of 
98.5%.[51]

Overall, AI‑supported MRI analysis has been shown to 
enhance diagnostic accuracy in emergency situations, 
expedite patient management, and support clinical 
decision‑making. However, challenges such as 
single‑center study designs, demographic imbalances, 
and limitations in model generalizability remain key 
considerations in the broader implementation of these 
models.

Ultrasonography
During the publication review period, a total of four 
USG studies were evaluated based on inclusion and 
exclusion criteria.[53‑56] These studies explored the 
effectiveness of AI applications in various clinical settings, 
including cardiac function assessment, carotid artery 
compressibility analysis, acute gallbladder pathologies, 
foreign‑body detection, and the determination of 
return of spontaneous circulation (ROSC) during 
cardiopulmonary resuscitation (CPR).

In terms of performance, AUC and accuracy metrics 
ranged from 0.81 to 0.99. The highest accuracy 
value (99.1%) was reported in the study by Holland et al., 
which utilized U‑Net and YOLOv7‑based AI models for 
foreign‑body detection in USG images containing 12,144 
annotations.[56] The study highlighted that these models 
could expedite decision‑making, particularly in remote 
areas or settings with limited access to experts. However, 
the labeling process was noted to be resource‑intensive, 
and in vivo validation remained limited.

The lowest AUROC value (0.81) was recorded in the 
study by He et al., which evaluated cardiac function 
using point‑of‑care echocardiography (point‑of‑care 
USG [POCUS]) in the emergency department.[53] The 
EchoNet‑POCUS model achieved an AUROC of 0.92 
for cardiac function assessment but only 0.81 for video 
quality. While the model accelerated bedside assessment 
and reduced operator dependency, its lack of multicenter 
validation and challenges in adapting to different 
imaging devices were cited as limitations.

Park et al. introduced RealCAC‑Net, an AI‑based model 
designed to determine ROSC during CPR by analyzing 
carotid artery compressibility.[54] Trained on 11,958 
images for training and 15,080 for testing, the model 
demonstrated superior performance over traditional 
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manual palpation, achieving 96% accuracy and a 97% 
F1 score. This system has the potential to enhance 
in‑hospital resuscitation management by supporting 
decision‑making during CPR. However, concerns 
regarding its generalizability across different devices 
and patient populations were noted.

Ge et al. investigated the use of AI in diagnosing acute 
gallbladder pathologies.[55] A DL model, trained on 266 
USG images from 186 patients, distinguished normal 
from abnormal gallbladder cases with 91% accuracy and 
categorized urgent versus nonurgent cases with 82% 
accuracy. The study aimed to facilitate rapid triage in 
gallbladder pathologies, potentially reducing reliance 
on specialist radiologists.

While AI‑based analyses of USG images significantly 
contribute to rapid diagnosis and patient management, 
challenges such as the lack of multicenter validation, 
device dependency, and sensitivity to imaging quality 
must be addressed for broader clinical integration.

Alternative image analysis and artificial ıntelligence 
applications beyond standard medical ımaging 
methods
During the publication review period, a total of nine 
alternative image analysis studies were evaluated based 
on inclusion and exclusion criteria.[57‑65] These studies 
explored the effectiveness of AI applications across various 
clinical settings, including the detection of retinal diseases 
using fundus photographs, fracture identification with 
infrared thermal images, anemia screening via conjunctival 
photographs, stroke detection from facial images, and cardiac 
function analysis using electrocardiography (ECG) images.

The study with the largest dataset was conducted by Song 
et al., focusing on the automatic detection of posterior 
segment pathologies using 90,250 robotic alignment optical 
coherence tomography images.[62] The model, named 
RobOCTNet, demonstrated high efficacy as a triage tool 
in ophthalmology emergency settings, achieving an AUC 
of 1.00 in internal validation and 0.91 in external testing. 
However, the study highlighted limitations, such as the 
model’s training on a relatively small volumetric dataset 
and its lack of real‑world clinical integration.

In terms of performance, AUC and accuracy metrics 
ranged from 0.75 to 1.00. The highest AUC value (1.00) 
was reported in the study by Song et al.[62] Conversely, 
the lowest accuracy (75.4%) was observed in the study 
by Zhao et al., which focused on anemia detection using 
conjunctival photographs.[61] The smartphone application 
eMoglobin was utilized to detect anemia by analyzing 
conjunctival images, achieving an AUC of 0.92 at an 
HBc threshold of 7 g/dL. However, the study noted the 
model’s limited sensitivity in detecting mild anemia cases.

In addition, Biousse et al. reported an AUC of 0.97 in the 
detection of papilledema using the BONSAI‑DLS model 
with nonmydriatic fundus photographs.[57] Another 
notable study by Wang et al. developed an AI model for 
diagnosing AIS from facial images of stroke patients. This 
model, based on EfficientNet and ResNet50, achieved an 
AUC of 0.91 in cross‑validation and 0.82 in independent 
tests.[60]

Furthermore, Maxin et al. introduced a model aimed 
at distinguishing ischemic from hemorrhagic stroke 
through a combination of pupillometry and ML. This 
model, which demonstrated an accuracy of 91.5%, has 
the potential to serve as a valuable decision‑support tool 
in prehospital stroke management.[64]

Although these alternative imaging modalities and 
AI‑supported analyses hold promise for enhancing 
rapid diagnosis and patient management, challenges 
such as the need for broader multicenter validation, 
dataset balancing, and clinical adaptation remain key 
considerations for their widespread implementation.

Text mining
Text mining is used to analyze unstructured medical 
records, such as triage notes and discharge summaries, 
to identify important patterns.[66] This prediction and 
feature extraction requires a certain preprocessing and 
analysis using NLP, an AI method that helps computers 
analyze and understand written text.[66]

In recent years, two concepts, LLM and NLP, have 
rapidly gained popularity, leading to a surge in 
publications and applications. Given the abundance of 
verbal and unstructured data in emergency medicine, 
these concepts have found extensive use in the field. 
Particularly in reporting, research is increasingly 
focused on models for epicrisis summarization, feature 
extraction from triage and anamnesis notes, and 
predictive analysis.

Forty‑three studies conducted on NLP (n = 26)[67‑92] 
and LLM[76,91,93‑107] (n = 17) in emergency medicine 
are  included in the review [Supplementary 
Table 2] (https://turkjemergmed.com/pages/2025‑2‑
issue‑supplementary‑files).

Natural language processing
The majority of NLP‑based studies are designed 
to retrospectively analyze unstructured text data, 
including triage notes, medical history, and emergency 
department notes from the electronic health 
records to predict emergency department patient 
triage,[71] diagnosis,[69,74,83] need for intervention[70,80,82] 
and outcome.[67,69,71‑73,75,77,79,81,82,83]

https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
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Mostly used methods are transformer‑based 
DL, Bidirectional Encoder Representations from 
Transformers (BERT),[67,70‑72,76,79,81] Term Frequency‑Inverse 
Document Frequency (IDF),[74,75,77,78,80] Bag of Words.[75,78] 
The ML models used are mostly ensemble methods, 
including the types of boosing algorithms as Categorical 
Boosting, Light Gradient Boosting Machine, Extreme 
Gradient Boosting (XGB), Logistic regression, and Deep 
Neural Networks.

Especially in NLP studies, the use of structured data 
together with unstructured data has a significant impact 
on AUC values. One study showed an increase in the AUC 
values when using both structured and unstructured 
data on the prediction of ED dispositions with the chief 
complaint, vital signs, and demographics.[78]

The highest patient population was seen with 
1,391,988 patient records by Patel et al., where 
BioClinical BERT was used in the hospitalization 
decision‑making from triage notes.[75] Within the duration 
of this review, NLP has been applied to diagnostic 
predictions such as syncope detection (AUC = 0.95), 
febrile convulsion prediction (F1 = 0.921), serious 
infection prediction (AUC = 0.913) and COVID‑19 
prediction (F1 = 0.796).

Evaluating the performances of the predictive analyses 
in terms of the need for intervention, Chai et al. found the 
highest AUC value of 0.89 in 38,214 patients for predicting 
the surgery indication, while Weidman et al. reported the 
highest performance as an AUC of 0.79 using histogram 
gradient boosting with TD‑IDF in the predicting 
life‑saving intervention, laboratory, and imaging needs 
on 12,913 patients just at the prehospital area.[80,82]

These data show that NLP methods show moderate 
and high performance in the prediction of diagnosis 
and outcome. The large data differences between 
studies indicate that the methods and the performance 
comparisons vary on different data sets and structured 
data integration. The NLP methods have been effective in 
many areas, from diagnose in the emergency department 
to predicting sociodemographical processes. These 
findings reveal that NLP‑based methods are largely 
studied, however, further optimization and transparent 
tuning processes are required. Further testing and 
optimization of NLP‑based clinical decision support 
systems is critical for clinical applications.

Large language models
The development of LLM has accelerated significantly 
in the last 2 years. Initially, LLM were trained on large 
datasets to predict text, then improved with human 
feedback. These models have become capable of 
performing various language‑based tasks and have 

acquired skills such as few‑shot learning. LLM models can 
summarize medical records, suggest possible diagnoses, 
and have demonstrated strong performance on medical 
examinations. However, the security challenges, risk of 
generating misinformation, and hallucinations are still an 
issue. Significant improvements have been made to make 
these models much more secure than previous models.[108]

One of the most studied models, GPT‑1, one of the first 
versions of Open AI, was released in 2018 and worked 
with limited training data and performed well on many 
NLP tasks.[109] However, as the model size increased, 
it was able to perform better on more complex tasks. 
GPT‑2 was released in 2019 with 1.5 billion parameters, 
making it much more powerful and successful on general 
language tasks. Then, GPT‑3 was released in 2020 with 
175 billion parameters and undertook many NLP tasks. 
Finally, GPT‑4 has much more powerful features and 
attracted attention with its ability to accept multimodal 
data inputs. The development of these models has 
been made possible especially by the combination of 
large data sets and powerful processing resources. In 
a noticeably short time, their accuracy rates are rapidly 
increasing, thus decreasing the use of older versions. 
However, the use of these technologies in critical areas 
such as medicine still faces many challenges in obtaining 
accurate and reliable results.[109]

LLMs are recently been studied within the emergency 
department data. The studies used different LLM, such as 
GPT and Bard and examined how these models perform 
in clinical decision‑support processes. Most LLM studies 
focused on GPT‑3.5 and GPT‑4, with comparing them to 
Bard and other specialized models. Among the methods 
used, the application of LLMs in critical areas such as 
physician decision support systems, patient triage, and 
disease diagnosis was prominent.

When the studies are examined, more prospective 
observational and prospective cohort studies are 
encountered, and it is seen that they contribute to 
the solution of various clinical problems such as 
triage,[91,92,94‑96,101] diagnosis,[92,95,98,110] appropriate test 
selection and outcome (admisssion[105] and mortality) 
prediction. The most commonly used LLM was GPT 
4 (n = 10), followed by GPT 3.5 (n = 6), BERT, Copilot, 
and Llama2.

Although the performance is found to be higher than 
NLP studies, the number of patient data was lower at 
45 (AUC 0.87)[94] to predict outpatient triage and higher 
as 864.089 to predict hospitalization with BERT with 
XGBoost, resulting in an AUC up to 0.87.[105]

These differences in data size indicate that testing 
LLM‑based models with larger datasets may yield more 
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reliable results in clinical practice. When the performance 
results of the studies were examined, it was determined 
that LLMs were generally successful, but some models 
fell short of expectations. These differences reveal that 
LLM need to be tested and optimized further before 
they can be fully integrated into clinical use. Although 
LLMs generally outperform traditional NLP methods, 
data availability and sample sizes vary widely. For 
example, studies using LLMs in 864,089 records for 
hospitalization prediction with BioClinicalBERT 
and XGBoost with an AUC of 0.87, while another 
large study with 484,094 patients used NLP with GB 
showed an AUC of 0.92 in ICU admissions.[89,105] These 
differences indicate that LLM‑based models require 
larger datasets for reliable clinical integration. The 
accuracy changes (AUROC = 0.65) among diagnosis, 
highlighting reliability concerns in stroke screening 
processes with GPT 3.5,[100] which is one of the older 
versions of GPT models. One of the most successful 
methods in diagnosis was found to be a Multilingual 
BERT by Levra et al., which predicts syncope from 
emergency department notes with symptom extraction 
and F1 scores of 0.98.[69]

Signal processing
Signal processing and AI‑assisted analysis techniques 
are increasingly playing a role in emergency medical 
decision‑making processes. The studies examined in this 
review focus on the processing of physiological signals, 
such as ECG and brain imaging, using AI algorithms to 
increase clinical diagnostic accuracy [Supplementary 
Table 3] (https://turkjemergmed.com/pages/2025‑2‑
issue‑supplementary‑files).

When the geographical distribution of the reviewed 
studies is examined, South Korea is represented by 
50.0%,[111‑116] China by 16.7%,[117,118] international by 8.3%, 
Taiwan by 8.3%,[119] Europe (France and Spain, Germany) 
by 16.7%.[120,121]

When evaluated in terms of intervention features, 
one of the examined studies (8.3%) focused on stroke 
detection.[120] The number of studies, including ECG 
analysis, was 3 (25.0%), two of which (16.7%) were directly 
aimed at the diagnosis of myocardial infarction (MI).[111‑113] 
The number of studies on arrhythmia detection (n = 1, 
8.3%),[119] optimizing the CPR process was (n = 2, 
16.7%),[114,115] prediction of admission to the intensive 
care unit and early warning systems (n = 2, 16.7%)[116] 
and SARS‑CoV‑2 detection (n = 1, 8.3%).[121]

When the studies are analyzed in terms of AI methods, 
CNNs is the most widely used method in signal 
processing and medical decision support systems. Four 
of the studies (33.3%) adopted CNN‑based approaches. In 
addition, two (16.7%) studies performed signal analysis 

using the transformer architecture. DL techniques were 
generally applied in two (16.7%) studies. Advanced 
modeling methods such as LightGBM were also used 
by 3 (25.0%) studies.

Electrocardiography
Herman et al. developed a DL‑based model to evaluate 
the performance of myocardial infarction (OMI) detection 
on 12‑lead ECG data in patients with suspected acute 
coronary syndrome. The study determined that the model 
showed two‑fold higher sensitivity compared to STEMI 
criteria, but lower specificity.[122] It was suggested that 
the model has the potential to improve patient outcomes 
by supporting early diagnosis and revascularization 
decisions in prehospital and emergency departments. 
Lee et al. developed a DL model that can extract digital 
STEMI biomarkers from printed ECG outputs to improve 
prehospital telecardiology. It was determined that 
the model achieved similar sensitivity and specificity 
levels with expert consensus.[112] Jang et al. proposed 
an AI‑supported ECG analysis model in determining 
the etiology of dyspnea. The model provided higher 
diagnostic accuracy than the NT‑proBNP test.[111]

Park et al. evaluated an AI‑based Quantitative ECG 
system in the detection of acute coronary occlusion after 
OHCA.[113] The diagnostic performance of the model 
was compared with expert assessment and shown 
to be noninferior. Liu et al. developed a CNN model 
that classifies arrhythmias with single‑lead ECG. The 
model achieved high accuracy with short‑term ECG 
recordings.

Cardiopulmonary resuscitation
Han et al. developed a noninvasive blood pressure 
prediction model during CPR. The model achieved 
high correlation coefficients in estimating systolic blood 
pressure, diastolic blood pressure, and mean arterial 
pressure. This study provides significant contributions to 
the real‑time evaluation of the CPR process.[114] Kim et al. 
showed that the AI‑assisted CPR robot provided similar 
hemodynamic results to LUCAS 3. The study revealed 
that AI can create individualized CPR management.[115]

Stroke
Ou et al. created a multimodal DL model that combines 
video images and clinical data to provide early diagnosis 
of stroke patients. The model achieved higher accuracy 
compared to individual modalities.[117] Sen et al. 
developed a ML model that analyzes hemodynamic 
waveforms obtained from carotid arteries to detect large 
vessel occlusions in patients with AIS.[120] The study 
has the potential to contribute to the development of a 
low‑cost, rapid prehospital screening tool that can be 
integrated with devices such as portable Doppler USG.

https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
https://turkjemergmed.com/pages/2025-2-issue-supplementary-files
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Alert systems
Zhang et al. developed a ML model using only 
non‑invasive parameters to predict the need for invasive 
mechanical ventilation (IMV).[118] The model achieved a 
higher AUC value (0.935) than traditional risk‑scoring 
methods. These findings form the basis of a system 
that can enable the prediction of IMV needs through 
early warning systems in prehospital and emergency 
department environments. Choi et al. developed a 
ML‑based model to increase the effectiveness of early 
warning systems in intensive care patients.[116] It was 
shown that the model has higher sensitivity than 
traditional scoring systems and can accelerate emergency 
intervention processes.

Other
Woehrle et al. developed a breath analysis model 
using semiconductor‑based electronic nose (E‑Nose) 
technology to distinguish patients with SARS‑CoV‑2 
pneumonia from uninfected individuals. The study 
shows that it has the potential to provide a rapid, 
noninvasive, and portable solution for the diagnosis of 
SARS‑CoV‑2 and similar respiratory diseases.[121]

These studies offer significant contributions to the 
integration of AI and signal‑processing techniques into 
clinical decision‑support systems in prehospital and 
hospital environments of emergency patient care. Such 
approaches in the field of signal processing have the 
potential to improve patient outcomes by optimizing 
early diagnosis and intervention processes.

Data mining on structured big data
Big data refers to large sets of patient records, lab results, 
and imaging reports that AI can analyze for patterns. Big 
data is large, fast‑growing, and diverse, making it useful 
for AI‑driven analysis in emergency care. However, raw 
big data is not inherently valuable; its true potential is 
realized through proper analysis and integration into 
clinical workflows. AI can analyze big data to predict ED 
overcrowding, patient deterioration, and other critical 
issues via extracting hidden patterns and relieving 
unknown associations.[123]

The health sector produces large amounts of data 
instantly, at high speed, and in variety. ML and DL 
methods are being used to improve health care, reducing 
human error regarding disease detection, diagnosis, 
prediction, drug discovery, precision medicine, 
and robotic surgery.[38] The digitalization of such 
data (transformation from hard copy to digital data) has 
paved the way for big data analytics applications in the 
health sector, which is promising.

Supervised learning is used for labeled (Survivor vs. 
nonsurvivor, admission vs. discharge, disease present 

vs. absent, etc.) data, and unsupervised learning is used 
for unlabeled data. While structured data (categorical 
and numerical data including laboratory results, 
demographics, vital signs, structured history data, etc.) 
is mostly used in prediction models such as mortality, 
risk stratification, and length of stay estimations, 
unstructured data is commonly applied in clustering and 
text‑based AI applications. ML models using structured 
data are frequently used in medical research.

Despite the rapid adoption of AI in emergency medicine, 
significant challenges remain, including data quality 
issues, bias in predictive models, and integration barriers 
with existing clinical workflows. Emergency physicians 
should pioneer the use of new technologies in emergency 
medicine practice. These technologies should be seen as 
tools that enhance clinical decision‑making and efficiency 
rather than as substitutes for the expertise and judgment 
of healthcare professionals. Studies have shown variable 
levels of success in AI‑powered models. AI models 
predicting emergency department overcrowding have 
achieved AUC values ranging from 0.70 to 0.89,[124‑128] 
indicating moderate‑to‑high predictive power but 
still requiring further validations and optimization. 
However, physician‑AI collaboration holds promise 
for improving the quality of patient care and reducing 
medical errors and costs.

Data is generated when the patient first contacts the 
healthcare system, either remotely or face‑to‑face. Since 
almost all data are produced digitally today, it can 
be processed instantly, and decision‑support systems 
can be started to operate. AI‑supported systems and 
ML models are frequently used in medical research 
and for outcome and risk prediction [Supplementary 
Table 4] (https://turkjemergmed. com/pages/2025‑2‑
issue‑supplementary‑files).

Prehospital
Nine studies related to prehospital patient care were 
reviewed.[129‑137] The studies evaluated the performance 
of AI and ML‑powered models for decision‑making 
of transfer and termination of resuscitation (TOR), 
predicting short‑ and long‑term mortality, bed availability 
before transfer, and determining factors that cause 
transfer delays.[129‑137]

Although the sample sizes of the studies varied, the 
largest data set was the study by Kajino et al., which 
evaluated the effectiveness of AI‑supported decision 
support systems in the TOR.[133] The study reported an 
AUC of 0.96, which is a highly accurate predictive model 
for TOR.

It was observed that the performance of the prediction 
models was evaluated in seven studies on structured 

https://turkjemergmed. com/pages/2025-2-issue-supplementary-files
https://turkjemergmed. com/pages/2025-2-issue-supplementary-files
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data. In these studies, AUC, mortality rates, accuracy, 
and specificity were used in the performance evaluation. 
Farhat et al. developed XGBoost and RF models for 
transport decision‑making, reaching 95% and 97% 
specificity values, respectively.[134] Kajino et al.’s 
AI‑supported models achieved an AUC of 0.96 in 
neurologically survival favorable survival prediction in 
OHCA regarding TOR decision‑making.[133] This study 
shows the potential of AI on one of the decision points 
in prehospital cardiac arrest management.

Besides its use for resuscitation; AI is also involved 
in resource management studies. Xu et al. showed a 
real‑time simulation‑based application integrating 
live data from 48 hospitals to optimize dispatch with 
prehospital bed availability predictions, potentially 
reducing transport delays and improving patient 
outcomes.[136] Furthermore, ML models are used in 
survival predictions of trauma patients using Survival 
Tree and Random Forest algorithms, effectively 
predicting 8‑h and 24‑h survival probabilities in severe 
trauma patients.[137]

Overall, prehospital AI models have shown similar 
or more successful results than traditional methods. 
However, concerns regarding real‑time implementation 
in prehospital area, interpretability of the models, and 
physician reliance on AI recommendations still remain 
unsolved and require external validation and prospective 
trials to assess real‑world applicability.

Triage
Triage is one of the most critical concepts in emergency 
medicine. Due to its nature, it involves sorting and 
prioritizing patients, making it inherently complex and 
filled with numerous gray areas. Various triage models 
have been developed to differentiate those who require 
urgent medical care, particularly in situations where 
resources are limited or demand surges. Among these 
models, five level triage systems such as the Canadian 
Triage and Acuity Scale (CTAS) and Manchester Triage 
System, which are complaint based, as well as the 
Emergency Severity Index (ESI), which is algorithm 
based and focuses on resource utilization, have been 
widely used.[138‑140] Beyond these, additional scoring 
systems have been developed to assess urgency at 
different levels.

One of the most critical challenges in triage is the issue 
of overtriage and undertriage. Undertriage can lead to 
delays in providing timely emergency care to patients, 
while overtriage results in unnecessary resource 
utilization.[141] Moreover, triage accuracy is influenced 
by several factors, including the experience of the triage 
team, the discrepancy between supply and demand, and 
other factors.

Given its many gray areas, triage has become a 
significant area of research in ML applications, with 
numerous studies focusing on integrating AI to enhance 
decision‑making and improve triage accuracy. As a 
result of the inclusion and exclusion criteria, 15 articles 
related to triage were reviewed. The studies mostly 
focus on validation studies of ML models developed 
for identifying low‑acuity and high‑acuity patients. 
AI‑driven triage models have been applied in pediatric 
and adult patient groups with decision‑making in 
trauma, major incidents, CBRN cases, and incorrectly 
classified patients (overtriage and undertriage).[138,142‑155]

It was determined that the sample sizes (studies 
conducted on real cases) are quite large, reinforcing 
the generalizability of the findings. The largest dataset 
sample, consisting of 1,833,908 ED patients, was 
studied by Look et al. to address class imbalance in 
ED classification models.[147] It has been observed that 
model performances are generally determined by AUC 
values, which range from 0.75 to 0.91. In addition to 
AUC values, accuracy, F1 score, sensitivity, and over/
undertriage rates were also used to evaluate model 
performances.

While Chen et al. introduced the Low Acuity Visit 
Algorithms model, which effectively identified 
nonurgent patients using logistic regression and random 
forest classifiers.[146] Yu et al. conducted an external 
validation study using the AutoScore framework to 
predict 2‑day mortality among ED patients, showing 
improved interpretability and robustness.[148] Evaluation 
of the performance of the modelLook et al. developed 
an AutoScore‑Imbalance framework to improve class 
imbalance in triage models, achieving AUC values 
between 0.75 and 0.91 with a higher sample size.[147]

The models are also compared with traditional models as 
Grant et al. demonstrated that ML models outperformed 
the CTAS in predicting the need for early critical care 
within 12 h, utilizing DL and gradient‑boosted trees.[153] 
Nanini et al. developed an ML model for hypoxemia 
severity triage in CBRNE emergencies, leveraging 
XGBoost and LightGBM with sensitivity values 
above 85%.[151] Defilippo et al. employed graph neural 
networks (GNNs) in 6962 patients with decision‑making 
efficiency and interpretability more than traditional 
models with almost 10% of accuracy.[149]

For misclassification and errors, two articles suggested 
AI solutions for reducing over and undertriage. Wyatt 
et al. explored AI’s ability to identify subgroups of 
misclassified patients (overtriage/undertriage) in a 
multicenter study, revealing that XGBoost performed 
better in reducing overtriage errors than random forest 
models.[150] Xu et al. developed ML‑derived triage tools 
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for major incidents, improving resource allocation and 
triage efficiency in mass casualty scenarios.[155]

Emergency department overcrowding
Emergency department overcrowding is another 
complicated issue that requires effective solutions. 
Although triage systems are designed to classify patients 
based on limited resources and prioritize those in urgent 
need of medical attention, they may become insufficient 
in the excessive demand. Overcrowding, often driven 
by unnecessary visits, leads to prolonged waiting times 
in the ED. As a result, the factors contributing to ED 
overcrowding and its consequences have become key 
subjects in predictive analyses involving ML.[125,156]

Eight articles were included in the review and were 
related to overcrowding. Studies were examined to 
evaluate ED overcrowding, ED visits and revisits, ED 
length of stay, and factors affecting ED length of stay 
prediction.[124‑128,157‑159] Study populations were sufficient 
to measure the models’ performances with AUC, c‑index, 
F1 score, and MAPE values. In the study by Davoudi et al., 
the ML models they developed in predicting the risks 
of ED visits and hospitalization in 9340 home healthcare 
patients with heart failure reached an AUC value of 
0.89.[124] Haraldsson et al. applied a time‑to‑event ML 
model for real‑time ED overcrowding prediction, using 
XGB, RF, DL survival analysis techniques with C‑index 
of 0.78.[125] Porto et al. leveraged feature engineering 
with XGBoost, LightGBM, and SVM models, achieving 
AUC values between 0.78 and 0.88 in ED patient 
arrival forecasting. In the length of stay prediction.[128] 
Canellas et al. introduced an interpretable ML model 
for prolonged ED LOS classification, combining random 
forest, logistic regression, and XGBoost, with an AUC 
range of 0.75–0.85 in 135,044 patients.[157] Aziz et al. 
developed an ensemble‑based (RF and GB) classification 
system for LOS estimation, outperforming traditional 
logistic regression models, however, with an AUC of 
0.69 (RF), 0.72 (GB).[127]

Other emergency overcrowding studies are focused 
on patient flow optimization and forecasting models. 
Peláez‑Rodríguez et al. utilized clustering and 
multi‑model regression techniques to forecast ED visits 
with improved short‑ and long‑term accuracy.[126] Lehan 
et al. examined factors contributing to pediatric urgent 
care demand, employing random forest and linear 
regression models in 164,660 patient data.[159] Saggu et al. 
implemented DL techniques (GNN, RNN, XGBoost, and 
Decision Trees) to predict 30‑day ED revisits, showing 
promising low results in early risk identification with 
0.65–0.70 AUC results.[158]

According to the overall results of the study, it can be 
said that ML algorithms show performances between 

0.75 and 0.91in evaluating and predicting ED crowding 
but promising improvements.

Diagnosis and management
ML methods are being studied to enhance and accelerate 
diagnostic processes in the emergency department, as 
well as to improve disease management. The seventeen 
articles regarding diagnosis and management included 
in the current review were assessed. It was determined 
that the studies mostly evaluated ML models in the 
prediction of different diagnoses in the ED, in addition 
to sepsis, rhythm recognition, and distinguishing 
challenging diagnoses.[160‑176]

Focusing on sepsis and infections, the overall 
sample size of the studies was sufficient. The largest 
sample size was the study by Song et al., which 
evaluated the performance of ML models in sepsis 
diagnosis[170] in a large‑scale dataset. Their ML models 
demonstrated AUC values between 0.68 and 0.93, with 
XGBoost outperforming other models. Aygun et al. 
introduced an interpretable XGBoost‑based sepsis 
risk model, incorporating Shapley values for feature 
explanation.[167] Besides sepsis prediction, Chiu et al. 
developed the most successful model for bacteremia 
prediction with laboratory results, combining ensemble 
learning, resulting in the highest reported AUC 
value (0.93) in this diagnosis processes.[176] Flores et al. 
applied random forest and neural networks to urinary 
tract infection diagnosis, showing that ML‑enhanced 
clinical decision support systems improved diagnostic 
accuracy compared to traditional methods (AUC 
0.81–0.88).[161]

Toprak et al. developed the ARTEMIS‑POC AI model, 
which uses high‑sensitivity cardiac troponin I data 
to rule out MI, achieving high NPV (99.96%) and 
sensitivity (99.68%).[169] Holmstrom et al. implemented 
XGB models to differentiate pulseless electrical activity 
from ventricular fibrillation, aiding sudden cardiac 
arrest diagnosis (AUC 0.68–0.72).[166] Chang et al. used 
synthetic minority oversampling techniques (SMOTE) 
and multiple ML models (RF, SVM, KNN, LR) to predict 
acute MI risk in chest pain patients, increasing diagnostic 
sensitivity (AUC 0.63–0.82).[164] Besides AMI, Yilmaz et al. 
leveraged explainable AI models (XGBoost, LASSO, 
SHAP analysis) to assess hematological indicators 
in acute heart failure diagnosis, achieving strong 
interpretability and accuracy.[165]

The reviewed studies reported AUC values ranging from 
0.68 to 0.93, with XGBoost and random forest models 
often outperforming traditional statistical models. 
However, there was significant variability in model 
performance based on dataset characteristics, feature 
selection methods, and validation techniques.
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Outcome and risk prediction
Beyond predictions in prehospital processes, triage, 
and diagnosis, another crucial role of AI in emergency 
medicine is patient management and survival. The 
prediction models may guide emergency physicians 
in clinical decisions, improving patient outcomes, and 
optimizing resource use. However, their effectiveness 
depends on careful model development, validation, and 
consideration of methodological challenges to ensure 
accurate and clinically useful predictions. Treatment 
effects may impact the ability to identify high‑risk 
patients and direct intervention.[177]

Thirty articles related to outcome and risk prediction 
were examined for inclusion in the current review. The 
majority of the studies evaluated the performance of ML 
models in mortality prediction and risk stratification, 
achieving AUC values ranging from 0.75 to 0.97 
regarding hospitalization and ICU admission, and 
long‑term risk prediction, and early clinical deterioration 
prediction.[89,90,171,178‑204]

Several studies, such as Rahmatinejad et al. and Jawad 
et al., demonstrated the superiority of ensemble 
learning models over traditional logistic regression in 
mortality prediction, achieving AUROC values above 
0.83.[178,200] Ding et al. and Shashikumar et al. successfully 
implemented XGBoost and DL models for intubation 
and physiological deterioration detection, showing high 
sensitivity and specificity.[181,185] In addition, Richards 
et al. developed an ML‑based Coagulation Risk Index, 
outperforming traditional INR‑based assessments with 
an AUROC of 0.97.[180]

Despite these advances, several challenges remain, 
including data imbalance issues, as observed in Park 
et al., which required external validation due to dataset 
variability.[188] Similarly, Hinson et al. highlighted the 
need for prospective validation, as most models were 
trained on retrospective datasets, limiting real‑world 
implementation.[195] Gauss et al. further emphasized 
interpretability concerns, noting that while SHAP‑based 
feature explanations improved model transparency, DL 
models in hemorrhage prediction of trauma patients.[198]

The sample sizes and method selection of the studies 
were compatible with the data sets. Across these 
studies, AUC values ranged from 0.75 to 0.97, with 
ensemble learning models (XGBoost, Random Forest, 
AdaBoost) and DL techniques outperforming traditional 
logistic regression‑based models. However, some 
studies had dataset imbalance issues, requiring data 
augmentation (e.g. SMOTE)[193,201] and multi‑site 
validation to improve reliability, while some models used 
explainable AI techniques (SHAP, LIME),[171,181,188,195,198] DL 
models remain black‑box systems, posing barriers to 

clinician adoption. The developed ML models achieved 
more successful results than classical methods.

Patient safety
Six studies included in the review were evaluated. It 
was determined that the studies were on predicting 
ED revisits, anticoagulation type, pressure injury risk, 
medication‑associated ED visits, and leaving against 
medical advice (AMA) patients.[205‑210]

Wei et al. developed ML‑based pressure injury prediction 
models using logistic regression, decision trees, and 
neural networks, achieving AUC values ranging from 
0.944 to 0.959, indicating high predictive accuracy.[205] 
Seger et al. introduced the FeelBetter ML system to stratify 
medication‑related risks, reporting odds ratios (ORs) 
of 7.9 for ED visits and 17.3 for hospitalizations, 
demonstrating its potential in identifying high‑risk 
patients before adverse events occur.[206]

Ahmed et al. studied a quality indicator by applying an 
XGBoost model with adaptive optimization to predict 
patients leaving AMA, achieving an AUC of 0.76 and a 
sensitivity of 82%.[207] Hsu et al. developed ML models 
for predicting 72‑h unscheduled return visits, comparing 
logistic regression, random forest, and DL models.[209]

Fujiwara et al. created an ML‑based model to predict 
anticoagulant use in elderly trauma patients, with AUC 
values of 0.88 for direct oral anticoagulants (DOACs) and 
0.96 for Vitamin K antagonists (VKAs), demonstrating 
high accuracy in medication selection.[208]

Across these studies, AUC values ranged from 0.71 to 0.96, 
with random forests, XGBoost, and logistic regression 
being the most frequently used models. ML systems are 
also promising for medication safety, and emergency 
return visits, potentially improving patient outcomes.

Emergency Medicine Education

With the frequent use of AI and LLM in daily life, the 
use of AI in medical education is also on the agenda. 
Studies on the use of AI in medical education have been 
increasingly on the rise over the past 20 years.[211,212]

In the development of medical education, determining 
the learning styles and habits of medical students 
and trainees undergoing specialization training, and 
developing educational approaches in line with these 
identified needs, holds significant importance.[213] The 
standout feature of AI in the integration into medical 
education is its potential to offer personalized, adaptive 
learning experiences.[212] By providing content and 
feedback tailored to medical students’ individual 
learning styles and habits, AI‑powered personalized 



Berikol, et al.: Artificial intelligence models in emergency medicine

Turkish Journal of Emergency Medicine - Volume 25, Issue 2, April-June 2025 7978 Turkish Journal of Emergency Medicine - Volume 25, Issue 2, April-June 2025

learning systems can optimize study efficiency, such 
as literature search and study planning. In this way, 
students can devote the time saved to in‑depth learning 
of medical concepts and practices.[213]

After the systematic search, sixteen studies on the 
use of AI in emergency medicine education were 
found [Supplementary Table 5] (https://turkjemergmed.
com/pages/2025‑2‑issue‑supplementary‑files). The full 
texts of three studies could not be accessed, and only 
one study was excluded from the review due to foreign 
language (German). The thirteen studies included in the 
review were classified according to the possible areas 
of use of AI in medicine and specifically in emergency 
medicine education [Supplementary Table 5] (https://
t u r k j e m e r g m e d . c o m / p a g e s / 2 0 2 5 ‑ 2 ‑ i s s u e ‑
supplementary‑files). AI models are widely used in 
the field of EM education. Since OpenAI’s ChatGPT 
announced in 2022, the studies in this domain 
progressively increased in educational use. Thus, 
nearly all the models used in this review are LLMs, 
we categorized the studies according to educational 
use. A total of five studies focused on Evaluation and 
Feedback Systems, two studies on Simulation‑Based 
Learning, Serious Games and Gamification, one study 
on Educational Content Development and Effectiveness 
Analysis, two studies on Skills Assessment and Video 
Analysis, one study on Planning and Management 
of Educational Programs, and one study on NLP and 
Educational Evaluations.

Simulation‑based learning, serious games, and 
gamification
The first of the studies classified under the title of 
Simulation‑Based Learning, Serious Games and 
Gamification is Aster et al.’s work on developing an 
emergency department simulation game called Digitale 
Virtuelle Notaufnahme (DIVINA) to improve medical 
students’ clinical reasoning skills and investigating the 
usability and user experience of this game.[214] The game 
was developed in a multidisciplinary way with the 
collaboration of software developers, physicians, and 
students who are potential users. It is stated that a virtual 
patient generator, a chatbot used to take medical history, 
and virtual patient faces developed with AI were used for 
the game. The study shows that DL related generative tools 
such as Generative Adversarial Network (StyleGAN) can 
be used for visual representations of virtual patients 
to ensure data privacy.[214] The other study evaluated 
within the classification is the one conducted by 
Duggan et al., which investigates whether the gamified 
crowdsourcing labeling method is a suitable approach 
for creating POCUS datasets for ML models.[215] The 
other study evaluated within the same classification is 
the one conducted by Duggan et al., which investigates 
whether the gamified crowdsourcing labeling method 

is a suitable approach for creating POCUS datasets for 
ML models.[215] Although this study did not directly 
focus on medical education, its findings suggest that 
gamified crowdsourcing methods may contribute to 
the development of high‑quality datasets, which are 
essential for ML‑supported tools in POCUS training.

Assessment and feedback models
The first study under the classification of Evaluation 
and Feedback Systems is by Spadafore et al., which 
evaluates the quality of narrative assessment comments 
used to measure students’ performance and progress 
in competency‑based medical education using NLP.[216] 
In the study, it is stated that narrative comments are 
currently evaluated using the Quality of Assessment 
for Learning (QuAL); the aim is to evaluate this 
time‑consuming method quickly and efficiently using 
a ML method like NLP. A total of 2500 evaluation 
comments from two emergency medicine residency 
programs were scored using QuAL by 50 raters, and this 
dataset was used to train the NLP model. The developed 
model reportedly predicts the QuAL score with high 
accuracy and effectively identifies comments lacking 
improvement suggestions.[216] The successful results 
of the study promise new methods for analyzing and 
evaluating student development. The authors’ sharing 
of the model they developed as open source not only 
ensures the reproducibility of the results but also serves 
as an example for models to be developed for future 
emergency medicine education assessments. Shamim 
et al. conducted a study examining the use of AI in 
evaluating essay‑type questions in medical education.[217] 
The authors manually evaluated and graded 10 short 
formative essays given to final‑year dental students 
and compared the grading using Chat Generative 
Pre‑training Transformer (ChatGPT) 3.5. Unfortunately, 
the authors did not share the results, stating that the 
responses were recorded and compared with manual 
grading, so there are no conclusions about the detailed 
analysis provided by ChatGPT and the reliability and 
consistency of the system. Moreover, the possible 
benefits directly to emergency medicine education could 
not be evaluated. It is seen that the authors additionally 
emphasized the potential of using AI in the evaluation 
of essay‑type questions.[217] In another study evaluating 
the performance of ChatGPT as an example of LLM 
in emergency medicine residency exams in Qatar and 
comparing the performance of residents, AI performance 
on multiple choice question (MCQ) format exams was 
assessed.[218] Between October 2021 and September 
2022, the results of five different examinations applied 
to emergency medicine residents (Post Graduate 
Year ‑ PGY1 to PGY4) were collected, and the same MCQ 
questions from these exams were asked to ChatGPT 
4.0 (paid version) in May 2023, and performance 
comparison was performed. In the study, it was found 
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that ChatGPT achieved a higher mean score (25.8 ± 2.6) 
than all resident groups; the mean scores of the residents 
increased according to the PGY level (PGY1 18 ± 3.5, 
PGY2 19.4 ± 3.2, PGY3 21.1 ± 3.8 and PGY4 21.9 ± 4.2)[218] 
However, the limitations of the study include the fact 
that the data were collected from a single institution, 
only multiple‑choice questions were used, short‑answer 
questions or clinical skills exams were not included, 
and questions containing images were transcribed and 
evaluated. The research indicates that AI, specifically 
ChatGPT, exhibits significant theoretical competence 
in emergency medicine examinations. The authors 
emphasize its potential as a supplementary resource 
in medical education; however, additional research is 
required to assess its relevance in more complicated, 
practice‑oriented training scenarios.[218] Another study 
is Misra et al.’s perspective‑type study examining the 
integration of ChatGPT in the objective structured clinical 
examinations (OSCE) process.[219] It was emphasized 
that OSCEs are a time‑ and resource‑intensive process 
for educators and that ChatGPT can create significant 
efficiency by contributing to the preparation of 
educational content and assessments. The study also 
included opinions on the potential uses of ChatGPT 
in OSCE rubrics, case preparation, and standardized 
patient (SP) creation.[219] In the study, an example of 
checklist preparation was created using ChatGPT, 
and random responses were given by the authors and 
ChatGPT was asked to evaluate the responses and 
give feedback.[219] However, there is no verification 
of the checklist, comparison with existing checklists, 
consistency and repetition of the assessment with 
real‑life examples. In a study analyzing the competition 
levels of standardized letters of evaluation (SLOEs) used 
during Emergency Medicine residency applications, 
Schnapp et al. examined the potential of AI‑based 
LLM (LLMs), specifically ChatGPT, in this process.[220] 
Analyses using ChatGPT‑4o based Julius AI (Caesar 
Labs, Inc.) demonstrated a strong correlation with faculty 
members’ rankings of SLOEs (r = 0.96).[220] However, the 
AI primarily relied on rating scales and often overlooked 
narrative data, even when given additional prompts 
to incorporate it.[220] Notably, when explicitly directed 
to focus on narrative elements, the model adjusted 
its assessment, though this led to a lower correlation 
with faculty consensus (r = 0.89).[220] This indicates that 
although LLMs perform well in structured, quantitative 
assessments, they may need clear direction to effectively 
incorporate qualitative elements. Their strength appears 
to lie in large‑scale, objective data analysis rather than 
comprehensive human‑like assessment.

Skills assessment and video analysis
The first of the studies we categorized as Skills 
Assessment and Video Analysis is the study by Wang 
et al. which examined the accuracy and reliability of 

ChatGPT‑4o’s assessment of CPR skills exams through 
video recordings.[221] In CPR skill examinations, due to 
the potential subjectivity in certain parameters (such 
as chest compression depth, and chest rise during 
ventilation) and the possibility of evaluators’ attention 
being negatively affected during long exams, the authors 
have stated that they considered the use of AI to prevent 
potential human errors.[221] While evaluating the video, 
ChatGPT was asked to score different CPR skills such as 
patient assessment, chest compressions, rescue breaths, 
and repeated operations. The scores obtained were 
compared with those of the expert raters. In the study 
conducted on 103 students’ skills test videos, it was 
reported that the ChatGPT‑4o model gave scores closer 
to the evaluations of senior experts, and ChatGPT‑4o had 
higher accuracy rates in the areas of patient assessment 
and rescue breathing.[221] Expert evaluators were also 
asked to rate the LLM scores on a Likert scale, and it 
was concluded that GPT‑4o showed consistency with the 
evaluation results and was reliable.[221] The study, which 
suggests that the use of AI in objective video analysis can 
be useful, gives an idea that computer vision methods 
can be useful, especially that evaluation processes can 
be accelerated by giving consistent results. Another 
study on skill assessment and video analysis is the study 
by Huang et al. which examines the development of a 
training evaluation system called SmartCPR, which was 
developed using the human pose estimation technique 
in CPR training.[222] The system, developed with the 
MoveNet model in the open‑source TensorFlow (Google 
LLC) library – integrating multiple ML and DL 
algorithms – is designed to run on Android‑based 
phones. It evaluates compression cycle, depth, frequency, 
and position to provide real‑time feedback.[222] In the 
study, in which a comparison was made with Resusci 
Anne QCPR (Laerdal Medical Corp.), it is seen that 
the performance and effectiveness of the system on 
real users were not measured, the technical features of 
the system were compared, and potential advantages 
were evaluated.[222] From the perspective of emergency 
medicine education, we can say that even if speculative, 
AI could be a tool that can be used in CPR training and 
could have beneficial aspects for learning processes. 
Especially through mobile devices, we can say that these 
systems could help make educational processes more 
accessible in the future.

Planning and management of educational programs
Eskandarani et al. address the use of AI in the process 
of creating annual rotation schedules for emergency 
medicine residents.[223] The challenges associated with 
organizing clinical rotations are reported to stem from 
the need to balance optimal patient care, adequate 
staffing, and the maximization of residents’ educational 
experiences while also addressing time‑sensitive 
curricular requirements.[223] While the authors emphasize 
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the potential use of LLMs such as ChatGPT and AI 
agents like task‑based AutoGPT, which leverage the 
APIs of ChatGPT models (e.g., 3.5, 4o) in the preparation 
of rotation programs, their study primarily describes 
a manually operated Excel (Microsoft Inc.) system as 
an example, without further elaborating on AI‑based 
implementations.[223] Given the complexity of such 
planning scenarios, the use of Computer‑Interpretable 
Guidelines (CIGs) may offer a more effective approach 
for AI‑driven implementation.

Johnson et al. explore the application of NLP techniques 
in educational assessments to analyze the sentiments 
of residents and faculty members toward Entrustable 
Professional Activity (EPA) evaluations.[224] EPAs are 
assessment tools designed to determine residents’ 
competence in patient care, and the study indicates that 
residents generally associate these evaluations with 
negative emotions.[224] Using Sentiment Analysis (SA), 
one of the NLP methods, the researchers aimed to 
quantitatively analyze the emotions of the residents 
and faculty members regarding this measurement 
tool and to determine the emotional differences 
between different groups (gender, specialty, etc.).[224] 
Participants from the fields that include pediatrics, 
general surgery, and emergency medicine were asked 
to answer standardized questions as well as open‑ended 
questions about their feelings about the EPA assessment 
and the factors affecting it.[224] The authors report that 
91 respondents answered the survey, 73 respondents 
answered the open‑ended question, and data from a 
total of 66 participants (30 faculty and 26 residents) 
were considered usable.[224] Using the National Research 
Council Canada (NRC) Emotion Lexicon, the frequency 
of words categorized as positive in the texts was 
analyzed, and the differences between the specified 
groups were compared.[224] In the group evaluation, it 
was observed that the frequency of positive words used 
varied according to the specialty. It was reported that the 
highest use of positive words was observed in pediatrics, 
and the lowest use of positive words was observed in 
general surgery.[224] Of course, in the article, a definitive 
result cannot be obtained because the evaluation was 
made only on the frequency of words without sentence 
context. Nevertheless, it points to the usability of NLP 
methods in EPA assessment and emerges as an area of 
study to be repeated in other training processes.

Educational content development and effectiveness 
analysis
Karnan et al.’s study of the effectiveness of educational 
materials used for patients developed by AI, which we 
classified in Educational Content Development and 
Effectiveness Analyses, gives an idea about whether 
materials such as informed consent and discharge 
recommendations, which are frequently used in 

emergency medicine, can be developed by AI.[225] 
ChatGPT 3.5 and Google Gemini (Google Inc.) have 
compared patient education materials produced on 
topics such as mammography screening, claustrophobia 
during MRI, and MRI safe/unsafe items.[225] When the 
texts were evaluated for scientific reliability (Modified 
DISCERN score), originality (QuillBot‑Learneo, Inc.), 
and ease of readability (Flesch‑Kincaid Calculator), both 
LLMs showed similar average performance in terms of 
scientific reliability. The similarity percentage was 0.5% in 
texts generated by ChatGPT and 9.43% in those produced 
by Google Gemini. In addition, ChatGPT‑generated 
texts had a higher ease of readability score, though the 
difference was not statistically significant (P = 0.1102, 
P < 0.05).[225] Although it is uncertain how the results of 
this study, conducted in April 2024, would be affected 
by the newly introduced models, its importance lies in 
the preparation of AI‑generated documents that meet 
quality standards for both patient‑related materials 
and other informational content. In addition, future 
studies should focus on assessing the extent to which 
AI‑generated patient education materials align with 
established scientific knowledge, ensuring their accuracy 
and credibility in clinical practice.

Guidelines on medical education
A guideline that was not included in our review with 
our search query, but which we would like to mention 
because it is noteworthy, is the last of the Best Evidence 
Medical Education (BEME) guidelines[226] published by 
The International Association for Health Professions 
Education (AMEE), which provides a framework 
for creating more effective and efficient learning 
environments in medical education and adopts an 
evidence‑based approach. In the 84th guideline of the 
BEME, which also provides an evidence‑based and 
evidence‑based approach to emerging AI studies and 
examines the role of AI in medical education, it states 
that the majority (48.6%) of studies involving AI‑based 
medical education practices are on undergraduate medical 
education, followed by graduate medical education and 
continuing professional development (22.3% and 2.5%, 
respectively), and that the majority of publications (68.7%) 
are about articles and innovations. In these articles 
and innovations studies, again, the largest number of 
publications were about studies involving knowledge 
and attitudes about AI (n = 51, 26.7%), followed by 
assessment of learning (n = 50, 26.2%).[212] Assessment 
of learning includes assessment of clinical skills and 
surgical/procedural skills.[212] It has been reported that 
32 studies focused on evaluating LLM performance 
in examinations, while 19 examined performance 
analytics, 11 investigated Virtual Patient Simulators, 
and 10 explored clinical guidelines for residents, such 
as Decision Support Systems on evaluating the studies 
referenced in the guideline from the perspective of 
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emergency medicine, it is noted that there are two direct 
studies regarding emergency medicine and two indirect 
studies that assess procedural skills in laryngoscopy 
use.[227‑230] Since the literature in the guideline is relatively 
limited in terms of emergency medicine, the aims and 
findings of the studies are briefly summarized.

The first of the studies, which is directly related to 
Emergency Medicine, evaluates whether ChatGPT 
can be used as a tool to teach bad news reporting 
skills to emergency physicians.[227] For this purpose, 
a detailed prompt was used with the ChatGPT‑3.5 
model, specifying the rules it needed to follow, and the 
SPIKES framework (Setting up, Perception, Invitation, 
Knowledge, Emotions with Empathy, and Strategy or 
Summary) was employed as the assessment method.[228] 
In the study, it was found that the model can design an 
appropriate scenario, give feedback to the user in the 
role of a physician, and evaluate user performance.[228]

In another directly related study, Yilmaz et al. 
evaluated whether comment data obtained through 
workplace‑based assessment (WBA) using NLP and 
ML applications could assist educators in identifying 
trainees who are at risk.[228] This retrospective study 
examined WBA data from September 2012 to July 2018 
to determine whether NLP and ML applications could 
assist educators in identifying at‑risk trainees – those 
who failed to meet expected competency levels or 
adequately perform assigned tasks.[219] Detecting such 
trainees was highlighted as crucial for enhancing 
patient safety, assessing training program efficacy, and 
ensuring efficient resource utilization, though it also 
posed a substantial workload for faculty members. The 
free‑text narrative comments written by the faculty 
members were converted into quantitative data using 
the bag‑of‑n‑grams technique, which works by counting 
the frequencies of words or groups of words (n‑grams), 
and these data were analyzed with ML models to 
identify trainees at risk.[228] These data were subsequently 
analyzed using ML models, with findings indicating that 
bigram‑based models demonstrated 86.9% accuracy in 
detecting low‑performing trainees, and were suggested 
as a potential decision‑support tool for faculty in 
assessing trainee performance.[228]

Among the studies involving the use of laryngoscopy 
and assessment of procedural competencies, Choi 
et al. aimed to determine which of four different 
laryngoscopes (Macintosh,  McGrath,  Pentax 
Airway‑Scope), including the A‑LRYNGO, a channel‑type 
video laryngoscope with an integrated AI‑assisted glottis 
guidance system, was suitable for intubation training for 
medical students who were novices and inexperienced 
in the use of personal protective equipment (PPE).[229] 
In a randomized, simulation manikin study, the groups 

were compared based on intubation time, success rate, 
and posttest short questionnaire with a short posttest 
questionnaire, administered both before and after the 
intervention. In this study of 30 senior medical students, 
participants were tested twice: once after the lecture and 
again following the hands‑on workshop, and the findings 
indicated that intubation success with channel‑type 
video laryngoscopes increased after the hands‑on 
workshop, while the AI‑assisted video laryngoscope 
showed 93.1% accuracy.[229]

In the study by Zhao et al., which examined the use 
of automated systems in the evaluation of neonatal 
endotracheal intubation training, it was emphasized 
that current training is conducted on mannequins and 
assessed by expert instructors. However, due to the 
limited number of expert instructors, pediatric trainees 
have restricted opportunities for adequate practice.[230] 
They reported that the sensor‑based, computer‑aided 
systems used to overcome these limitations are 
inadequate in analyzing complex movements, 
recognizing critical directions, and providing accurate 
feedback.[230] In the study, kinematic multivariate time 
series (MTS) data – including rotation, position, and 
velocity – collected from electromagnetic sensors attached 
to laryngoscopes and mannequins were processed using 
a dilated CNN. Motion patterns were then visualized 
as heat maps through Class Activation Mapping.[230] 
Thus, the study aimed to provide meaningful feedback 
to trainees by identifying movements with significant 
impact. The performance of the CNN model, trained on 
190 intubation attempt datasets from 44 subjects, was 
evaluated using the Leave‑One‑Out Cross‑Validation 
method. The findings reported a high accuracy 
rate (92.2%) and reliable outcomes, highlighting the 
need for further studies to facilitate the integration of 
this model into computer‑aided training systems.[230]

Discussion

In this scoping review, studies conducted in the last year 
on emergency department patient care and emergency 
medicine education have been examined. It explores the 
use of AI subfields such as image processing, natural 
language processing, signal processing, and text mining 
in various areas of emergency medicine, including 
triage, diagnosis, outcomes, risk analysis, and education. 
The findings suggest that studies on the application of 
AI subfields in emergency medicine show promising 
potential. However, each method has its own unique 
characteristics, specific areas of application, and inherent 
limitations.

AI has the potential to enhance medical imaging processes 
in emergency medicine. AI models can automate routine 
tasks, facilitate early disease detection, and accelerate 
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decision‑making by assisting radiologists and clinicians 
without formal radiology training. AI‑supported 
imaging tools significantly reduce interpretation time 
and improve decision‑making efficiency in emergency 
departments. Computer‑aided detection (CADe) and 
diagnosis (CADx) systems automatically highlight 
pathologies such as fractures, lung diseases, and 
neurological disorders, thereby saving valuable time 
for physicians.

Additionally, AI‑based imaging systems provide 
substantial support in regions with a shortage of 
experienced radiologists. Studies have demonstrated 
that AI‑assisted radiographs enhance sensitivity and 
specificity in detecting conditions such as fractures, lung 
nodules, and ischemic strokes. These systems improve the 
efficiency of healthcare services by increasing diagnostic 
accuracy, particularly in resource‑limited settings.

AI‑driven segmentation and classification models 
streamline the diagnostic process by minimizing 
human errors in image interpretation. For instance, AI 
applications in USG imaging can rapidly assess cardiac 
function, aiding in the management of critically ill 
patients. With the increasing integration of automation, 
clinicians can make faster and more precise decisions, 
optimizing patient care pathways.

Furthermore, AI integrates medical imaging with patient 
data to provide comprehensive diagnostic insights. AI 
systems that function in conjunction with electronic 
health records (EHRs) can detect conditions such as 
acute heart failure and sepsis at an early stage, enabling 
the development of personalized treatment plans. These 
multimodal AI approaches play a crucial role in the 
future of medicine by offering a more holistic evaluation 
of patients’ health conditions.

AI holds great potential for medical image processing, 
but several significant challenges remain in this 
field. Medical images vary due to factors such as 
low resolution, artifacts, and differences in imaging 
devices. While large, high‑quality datasets are essential 
for AI models to achieve high accuracy, the lack of 
standardization across data from different institutions 
presents a major obstacle.

Moreover, AI models trained on specific datasets may 
not perform as expected when applied to diverse patient 
populations and imaging techniques. Variations in 
imaging devices and patient demographics can impact 
model accuracy and reliability. Challenges related 
to model robustness and generalizability remain key 
barriers to the widespread adoption of AI in clinical 
settings.

Another critical issue is the interpretability of DL‑based 
systems, which are often perceived as “black boxes.” 
The opacity of AI decision‑making processes makes 
it difficult for clinicians to fully understand and trust 
these systems. Enhancing interpretability is essential to 
increase clinician confidence and facilitate the integration 
of AI into routine medical practice.

The integration of AI into existing clinical workflows 
also presents logistical challenges. AI tools that are not 
designed to seamlessly interact with hospital information 
systems often require additional infrastructure and 
significant computational resources, limiting their 
usability – particularly in smaller healthcare facilities. 
This is one of the factors delaying the widespread 
adoption of AI technology in medicine.

Furthermore, the implementation of AI‑based medical 
imaging tools raises ethical concerns related to patient 
privacy, data security, and algorithmic bias. Regulatory 
bodies like the FDA require rigorous validation before 
approving AI‑driven diagnostic tools for clinical 
use. While these regulatory measures enhance reliability, 
they also slow the transition of AI innovations from 
research to clinical practice.

Furthermore, this 1‑year‑review particularly reflects 
the rapid progress and competition in NLP and LLM. 
Although the most important problem of NLP is the 
complex structure of the language itself, this problem 
has been largely solved with the advancement of the 
concept of ontology in health data, but when language 
models were released for distribution in recent years, 
this issue also provided feature extraction and reasoning 
with higher and faster models.

Although studies on LLM, especially in emergency 
medicine, are primarily conducted on sample scenarios 
determined by experts to determine the accuracy of the 
LLM, studies using real patient data are also increasing 
today. This situation has led to the need for data to be 
entered correctly into electronic health records.

Although minimizing the need for structuring the data 
seems advantageous, the fact that the training rules 
of large databases of LLM can be affected by external 
factors necessitates the need to include customized 
tools for health data. In general, LLM‑based studies 
offer significant potential in the emergency department 
environment. Models such as GPT‑4 and BioClinicalBERT 
have been found to be higher performance than NLP 
studies.

Most of the studies have been conducted with 
retrospective data analysis; thus, the development 
of systems modeled with real‑time data streams is 
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important to make clinical applications more reliable. 
More prospective and larger‑scale studies are needed 
to understand how LLMs can be used more effectively 
in medical decision‑support systems.

ML methods are used to overcome existing standard 
clinical decision support systems and develop new 
prediction models. These prediction models have 
the potential to assist emergency physicians in 
decision‑making. Considering the breadth and diversity 
of the field of emergency medicine, the use of ML models 
in emergency medicine practice is an opportunity that 
cannot be ignored. Hidden patterns that will contribute 
to emergency medicine patient care in meticulously 
obtained data sets can be revealed with ML models and 
used in patient care. Besides the issues mentioned on 
image and text processing; as a result of examining ML 
models with structured data, it was determined that most 
studies were aimed at making predictions in different 
datasets for various outcomes and diagnoses. However, 
it should not be forgotten that all these prediction models 
were created with data obtained from existing data sets. 
Ultimately, the ML model’s performance also depends 
on the data in the dataset. Thus, the accuracy of the 
structured data, complete and error‑free recording, and 
meticulous preprocessing are the main factors in the 
success or failure of the models.

Although AI‑driven triage systems exhibit strong 
predictive power, concerns remain regarding model 
bias, and integration challenges. Many models are 
lack of adaptability to real‑time environment, limiting 
their deployment in as triage in high‑acuity emergency 
settings. Future studies should focus on external 
validation across diverse populations and interpretable 
AI models to enhance clinician acceptance is that each 
population is unique, and the results obtained are valid 
for that population. Its validity for different populations 
needs to be confirmed by external validation studies.

On the view of emergency medicine education, current 
research on the use of AI in emergency medicine 
education largely consists of proof‑of‑concept studies, 
often assessing AI models – particularly LLM – through 
standardized tests. The prevalence of small‑scale, 
non‑randomized, and single‑institution studies limits 
the ability to draw broad conclusions, making it 
difficult to determine AI’s actual role beyond initial 
feasibility testing. Like many emerging technologies, 
AI is frequently portrayed as a game‑changing solution 
to a variety of challenges, including those in medical 
education. However, having a powerful tool at hand 
does not mean it should be applied indiscriminately – a 
perspective well summarized by the saying, “If you 
only have a hammer, you tend to see every problem as 
a nail.” While AI‑based tools, including LLMs and other 

ML approaches, have the potential for improving certain 
aspects of medical education, their adoption should be 
driven by solid evidence and genuine educational needs, 
rather than a default inclination to incorporate AI into 
every possible domain.

In conclusion, AI models are evolving and gaining 
significant potential across multiple areas in emergency 
medicine, such as triage, diagnosis, and outcome 
prediction. However, mostly faced challenges such as 
data variability, model generalizability, and integration 
into clinical workflows. Rapid updating of versions 
requires that the results in the literature progress at the 
same pace. With the continuous refinement of models, 
better data quality shows promising results within 
emergency care practice and emergency medicine 
education.
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